If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-2190=0
a = 1; b = 1; c = -2190;
Δ = b2-4ac
Δ = 12-4·1·(-2190)
Δ = 8761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{8761}}{2*1}=\frac{-1-\sqrt{8761}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{8761}}{2*1}=\frac{-1+\sqrt{8761}}{2} $
| 42=2+3n-3 | | 0,5+0,8x=1,5x+7 | | y/8=20 | | 60=12+6n-6 | | 9x=168-5x | | 7/3+3x=15 | | 8y+89=321 | | y=1.8y | | 8*1.1^x=20 | | 8*(1.1)^x=20 | | 17/4+x=26 | | 8*1,1^x=20 | | x+x(0.01)=12500 | | x+12500(0.01)=12500 | | x-12500*(0.01)=12500 | | x-12500*(0.1)=12500 | | x^2-31x+18=0 | | 17x-x^2=70 | | 2(8−4x)+3(2x−8)=6 | | 1,5+2x=4,7 | | 350-0.5q=50 | | 2(2x+3)+4(4+4x)=42 | | 6,0=12x | | 0,1x=10 | | 14=29-x | | x-3,2=4,7 | | 5x-3=3x+7=12 | | 3,69=x+2,87 | | 5x-3=3x-4=12 | | 8÷2(2+2)=x | | 11.2=1.2-5x | | 8x=14x+19 |